
HAL Id: hal-03045912
https://univ-corse.hal.science/hal-03045912

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Wind, solar and battery micro-grid optimal sizing in
Tilos Island

Jean Laurent Duchaud, Gilles Notton, Fouilloy Alexis, Cyril Voyant

To cite this version:
Jean Laurent Duchaud, Gilles Notton, Fouilloy Alexis, Cyril Voyant. Wind, solar and battery micro-
grid optimal sizing in Tilos Island. REM2018, Renewable Energy Integration with Mini/Microgrid,
Sep 2018, Rhodes, Greece. �hal-03045912�

https://univ-corse.hal.science/hal-03045912
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


 

Available online at www.sciencedirect.com 

ScienceDirect 

Energy Procedia 00 (2018) 000–000  

www.elsevier.com/locate/procedia 

 

1876-6102 Copyright © 2018 Elsevier Ltd. All rights reserved. 
Selection and peer-review under responsibility of the scientific committee of the Applied Energy Symposium and Forum, Renewable Energy 
Integration with Mini/Microgrids, REM 2018. 

Applied Energy Symposium and Forum, Renewable Energy Integration with Mini/Microgrids, 
REM 2018, 29–30 September 2018, Rhodes, Greece 

Wind, solar and battery micro-grid optimal sizing in Tilos Island 

Jean-Laurent Duchauda*, Gilles Nottona, Alexis Fouilloya, Cyril Voyantb  
aSPE Laboratory – UMR CNRS 6134, University of Corsica, France 

bPIMENT Laboratory, University of La Reunion, France  

Abstract 

This paper presents a flexible power plant modeling associated with a Multi-Objective Particle Swarm Optimization in order to 
obtain the optimal size of each plant component. The modeling can be adapted to a wide range of energy sources, storages and 
loads. The methodology is applied to a Wind Turbine / Photovoltaic array / Battery bank configuration located in Tilos, Greece. 
The optimization is set up to minimize the system cost and the energy imported from non-renewable sources. The results form a 
Pareto front representing the trade-off between the equipment cost and the micro-grid autonomy. An optimal solution for a given 
energy importation cost is detailed as an example. 
 
Copyright © 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Energy production and distribution in non-interconnected areas are often costly and not environmental friendly. 
This is especially true for islands [1] where the plants heavily rely on fossil fuel or on undersea cables, causing 
important power losses. Local energy production from renewable sources can help to reduce the energy cost and its 
environmental impact. To supply power to the consumers at all times, renewable energy power plants should include 
an energy storage system due to the intermittent nature of the sources [2]. Coupling wind and solar power can also 
help reduce the production variability [3]. 
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Such a power plant is expensive and can easily be not profitable if improperly sized [4], [5]. This problem has 
often been studied in the literature [6] with different algorithms such as Genetic Algorithm [7], [8] or Particle Swarm 
Algorithm [9], [10]. However each of these references focuses on a specific power plant configuration. 

The methodology presented in this paper uses a 12-variable modeling applicable to a wide range of micro-grid 
configurations [11]. It uses a Multi Objective Particle Swarm Optimization (MOPSO) algorithm [12], [13] to 
minimize the system cost [14] and the dependence to external energy sources. This external energy cost is used after 
the optimization to obtain the best plant configuration for a given location and consumption profile. 

The algorithm is used to size a wind and solar power plant associated with a battery bank in Tilos Island, Greece. 
The next section describes the flexible plant modeling, how it is configured for the case studied, its power sources, 
the energy conversion components, the energy management strategy and the economic assumptions. Section 3 
briefly presents the optimization problem and the MOPSO algorithm. Finally, the optimization results are presented 
in Section 4. 

2. Plant Modeling 

2.1. Flexible plant modeling 

The modeling used in this paper is designed to be modular. It can simulate a wide range of plant configurations 
made of one or two Renewable Energy Systems (RES) and one External Storage System (ESS). The plants modeled 
have to supply a load either at all times or with a Loss of Power Supply tolerance. They can be connected to a main 
grid or a controllable source like a Diesel Generator if the RES power is not sufficient and may or may not export 
the exceeding energy produced. This flexibility is offered by nine Generic Conversion Systems (GCS) that can be 
enabled or disabled depending on the configuration modeled.  

Fig. 1 presents the algorithm setup for the plant used as an example in this paper. It is made of a Wind Turbine, a 
Photovoltaic array and a Sodium Nickel Chloride battery bank. The plant is located in Tilos, Greece, and has to 
supply power to approximately 800 inhabitants [15]. In case the RES are not sufficient to power the load, energy can 
be produced by a Diesel Generator or imported via an undersea cable from Kos, a nearby island. 

2.2. Renewable Energy Systems 

The Wind Turbine and the PV panels power output is computed from meteorological weather data measured in-
situ. The computations are done before the optimization with a unitary installed power then the output is multiplied 
by the actual installed power. In addition to these RES, the plant can use an undersea cable or a Diesel Generator to 
import power.  

Fig. 1. Algorithm setup for the plant configuration. 
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2.3. Generic Conversion Systems 

Generic Conversion Systems (GCS) are the backbone of the plant modeling. They are used to model the plant 
components such as power electronics like inverters or rectifiers; a fuel cell and an electrolyzer; water pumps and 
turbines or a battery charge efficiency. By activating or deactivating some GCS, the algorithm can be adapted to the 
configuration wanted. 

They act as a limiter, which represents the maximum permissible power for the component and a gain that 
models the component efficiency. This gain can be fixed or function of the input power. The optimization algorithm 
will find the optimal maximum power (i.e. size of the component) according to the objectives defined. 

In our case (Fig. 1), I1dc, I1ac, I2dc, I2ac and ISac are deactivated. WT control represents the Wind Turbine 
power electronics doing the AC/AC conversion, set up with a constant 96% efficiency. The power produced by the 
PV panels is converted to AC by inverters. PV inverter models these components with an efficiency curve extracted 
from the datasheet of a commercial inverter. Finally Charge and Discharge represent the battery bank power 
electronics. They are setup with a 70% roundtrip efficiency and their maximum power is defined by the storage 
capacity with a 1.6 C charge rate [16]. 

2.4. Power management 

The optimization algorithm needs values representing the plant performances in order to find the best solution. 
To evaluate the performances of a given plant, its behavior is simulated for a period of time with weather and 
consumption data. This period should at least be one year to avoid seasonal phenomenon and be representative of 
the location.  

Since the optimizer will simulate a great number of configurations, the power management algorithm must be 
simple enough to be run quickly. In our case, the power produced by the Wind Turbine is converted to the grid 
voltage and frequency by WT control. In the same way, the power from the PV panels is converted via PV inverter. 
These power are used to supply the load. If the RES power is greater than the consumption, the remaining power is 
routed to Charge to be converted to DC and stored in the battery bank. If the batteries are full, the energy is exported 
to the main grid if possible. If the RES are not enough to power the load, the batteries are discharged and converted 
to AC through Discharge. In case that is still not enough, the remaining energy is imported from the grid or the 
Diesel Generator. Finally, if the import power limitation does not allow to supply the load, there is a Loss of Power 
Supply and the plant is penalized by the optimizer. 

The power exchanges are integrated and normalized for 365 days to obtain the annualized energy consumed by 
the load	��� , the imported energy from non-renewable sources	��� , the renewable energy used ���  and the 
exceeding energy produced	���. The amount of imported energy ��� is used in the optimization as an objective to 
be minimized. The other values are stored for post-treatment. 

To prevent the algorithm from returning a costly solution with almost no energy imported, an economic criterion 
need to be also minimized. 
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2.5. Economics 

Estimating the cost of a power plant is a difficult task due to the number of economic parameters at stake and 
their variability. The cost for installed PV panel for example decreased by 83% in seven years [17]. They also 
depend on the supplier, the location and the labor cost and are subject to change quickly. The values used come from 
[17] and [18] for PV panels and inverters, from [19] for Wind Turbines and from [18] and [20] for the batteries. The 
authors insist that this paper focuses on the modeling and the optimization methods and that the costs used are 
purely indicative. 

Each component has an installation cost �� that depends on its size. The number of replacement 	
 is derived 
from the equipment lifespan �� and the study duration � set here as 25 years. The buying cost is then the 	
 times 
the installation cost adjusted by the actualization rate �� that represents the yearly cost variation. The buying cost is 
divided by the study duration to obtain an annualized cost: 

 ��� = ∑ ����������
��

�� !"  (1) 

The annual maintenance cost is assumed to be a fraction �# of the installation cost. The annualized cost for a 
given equipment is finally: 

 �� = ��� + ���# (2) 

The Annualized Cost of System (ACS) is then obtained by summing the annualized cost of each equipment. The 
ACS is used as the second objective to minimize in the optimization. Since it conflicts with the energy imported, the 
optimization results will form a Pareto front. 

3. Particle Swarm Optimization 

The optimization problem aims to minimize the Annualized Cost of System (ACS) and the imported energy ��� 
under the constraints that the Lost of Power Supply Probability (�%&%) is null. It can be formulated as follows: 

Find '∗ in ) such as	 *'
∗ = +,-	./01∈345�&�'�, ����'�7

�%&%�'∗� = 0  (3) 

Where ' is the vector defining the Wind Turbine nominal power, the PV array peak power, the PV inverter rated 
power and the battery bank capacity and ) the study domain. 

This four-parameter optimization problem is solved using a Multi-Objective Particle Swarm Optimization 
(MOPSO) [13], [21]. It is a gradient-free stochastic algorithm that can solve large scale problems. It works by 
moving the particles	', representing plant configurations, in the study domain. The particle speed is derived from the 
plant performances: 5�& and	��� so they converge to the optimal solution, if any. The algorithm returns a list of 
non-dominated plants forming a Pareto front. 

4. Optimization results 
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The solutions given by the algorithm are represented by the dark blue line in Fig. 2. Each point in the graph 
represents an optimal plant with its 5�& and the imported energy percentage:	��� ���⁄ . The blue circle denotes the 
actual configuration installed and the thinner lines represent the Wind Turbine nominal power (green), the PV array 
peak power (yellow) and the battery bank capacity (light blue). 

These results indicate that the principal energy source should be the wind. Above 25% imported energy, the plant 
solely relies on the wind and on the importations without solar power or storage. Below this threshold, increasing 
the PV array size becomes profitable. However, since this power is not available at night, it should be associated 
with a bigger storage. This increases drastically the cost and gaining in autonomy becomes expensive. 

The optimal solution depends now on the cost of producing energy with the Diesel Generator and on the energy 
importation cost. These costs may vary every hour and should be treated separately. For the sake of illustration, they 
are supposed equal and constant so the results can be plotted in a 3D graph.  

Let �� be the energy buying cost (i.e. the importation and the diesel cost). For each plant, the production cost �: 
can be defined as the ratio between the money spent in one year and the energy consumed: 

 �: = ���;�<���
�=�  (4) 

For a given	��, the plant in the Pareto front that minimizes �: is plotted in red in Fig. 3. In the end, assuming 
��	allows to find the optimal component size of the plant, defines the ACS, the imported energy and the production 
cost. Fig. 4 synthetizes these results on the same figure. For example, for �� = 220	€/MW.h, the optimal plant is 
made of a 1 MW Wind Turbine, a 200 kWp PV array with associated with inverters accounting for 350kW nominal 
power and a 400 kW.h power bank. This plant offers 80% energetic autonomy and a production cost of 87 €/MW.h. 
This configuration is marked by a red circle in Fig. 2. It uses more wind power and less storage than its actual 
counterpart for slightly better performances. 

Fig. 2. Algorithm optimization result for a Wind Turbine / Photovoltaic array / Battery bank configuration in Tilos. 
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5. Conclusion 

The algorithm presented in this paper is able to optimize the component sizes of a hybrid renewable power plant 
associated with a storage. The plant model can be adapted to various configurations and takes into account the non-
linear cost of the equipment and power dependent efficiencies. A Multi Objective Particle Swarm algorithm is used 
to solve the optimization problem. 

The algorithm has been applied to a Wind Turbine / Photovoltaic array / Battery bank power plant in Tilos Island, 
Greece. To avoid assuming an energy importation cost before the optimization, the objectives are to minimize the 
Annualized Cost of System and the imported energy. Once the Pareto front is obtained, the optimal solution for 
different importation costs can be computed. The solution consists on the size of each plant component (WT size, 
PV installed power, inverter nominal power and storage capacity), the ACS, the imported energy and the energy 
production cost. 

This algorithm has successfully solved the optimization problem. It can be improved by implementing a better 
energy management strategy [22], the possibility to use multiple storages, more precise power sources models or the 
eventual storage aging. Furthermore, the economic parameters for the components buying and maintenance costs 
need to be refined to give more realistic solutions. 
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