Accéder directement au contenu Accéder directement à la navigation

 

Bienvenue dans la Collection HAL du Laboratoire de Mathématiques Blaise Pascal (LMBP - UMR 6620).

Le laboratoire de mathématiques Blaise Pascal (LMBP) est un centre de recherche publique en mathématiques. C'est une unité mixte de recherche de l’université Clermont Auvergne et du CNRS.
La politique scientifique en mathématiques du site clermontois est définie au sein du LMBP dans le cadre de la stratégie nationale du CNRS (via l’institut national des sciences mathématiques et de leurs interactions) et de la politique globale de site. Le laboratoire a pour mission la production de nouveau savoir en mathématiques. Il participe au dynamisme mathématique international. L’interaction avec l’environnement social, économique et culturel s’ajoute à cette mission principale.
La richesse principale du LMBP, qui lui permet d’atteindre l’objectif de production d’une recherche de haut niveau, est l’ensemble de ses chercheurs et enseignants-chercheurs. Le laboratoire accueille 60 chercheurs et enseignants-chercheurs permanents et une vingtaine de chercheurs non permanents.

Ceux-ci sont répartis en quatre équipes :

- Équations aux dérivées partielles et analyse numérique, dirigée par Arnaud Münch ;

- Géométrie, algèbre, algèbre d’opérateurs, dirigée par Julien Bichon ;

- Probabilités, analyse et statistiques, dirigée par Frédéric Bayart ;

- Théorie des nombres, dirigée par Éric Gaudron.

Les thèmes principaux de l’équipe équations aux dérivées partielles et analyse numérique sont la modélisation et la simulation numérique en mécanique des fluides, la contrôlabilité et les problèmes inverse, les équations de la cinétique et les problèmes hyperboliques, l’homogénéisation et l’analyse asymptotique.
Les thèmes de l’équipe géométrie, algèbre, algèbre d’opérateurs peuvent être regroupés en trois grands axes : algèbre et théorie des représentations, géométrie non-commutative et algèbres d’opérateurs, géométrie et topologie en petite dimension.
Les analystes de l’équipe probabilités, analyse et statistiques s’intéressent à l’analyse fonctionnelle, harmonique et multifractale. Les probabilistes étudient le calcul de Malliavin, les systèmes de particules, les processus de Markov, les équations aux dérivées partielles stochastiques, les grandes et moyennes déviations et les marches aléatoires perturbées.
Enfin, les statisticiens étudient la géométrie stochastique et l’inférence géométrique, les algorithmes statistiques du traitement du signal, les séries temporelles, la théorie statistique des champs aléatoires, les statistiques bayésiennes et la statistique des processus.
Les thèmes de l’équipe théorie des nombres peuvent être regroupés en deux grands axes : formes modulaires et géométrie diophantienne, analyse ultramétrique.

Le laboratoire édite une revue de recherche à comité de lecture international : les annales mathématiques Blaise Pascal. Ce journal publie des articles de recherche en mathématiques depuis 1962.

Le laboratoire organise tous les ans depuis 1971 une école d’été en probabilités à Saint-Flour. Cette école, la plus ancienne de la discipline, poursuit trois buts : présenter dans trois cours de haut niveau une synthèse des recherches effectuées dans un domaines des probabilités ou des statistiques ; permettre aux participants de présenter leurs travaux ; faciliter les rencontres entre jeunes probabilistes.

Les membres du laboratoire contribuent de façon essentielle aux formations en mathématiques de l'université Clermont Auvergne, organisées notamment au sein de l’UFR de mathématiques mais aussi à Polytech Clermont-Ferrand.

Rechercher dans la collection


Derniers dépôts

Chargement de la page

Consultation et citation

La propriété intellectuelle des documents déposés reste entièrement celle des auteurs. Les utilisateurs de HAL sont donc soumis aux règles du bon usage habituelles, dont le respect des travaux originaux et l'interdiction du pillage intellectuel.
Les documents peuvent être exploités à des fins d'enseignement et de recherche ; les utilisateurs s'engagent en revanche à indiquer la référence complète du document, indiquée sur la notice HAL de celui-ci.

 

Mentions légales

Les archives ouvertes de l'Université Clermont Auvergne ont été réalisées avec le concours du Centre pour la Communication Scientifique Directe, de l'Université Clermont Auvergne, et de la bibliothèque numérique de la Bibliothèque Université Clermont Auvergne.

         Directeur : Julien BICHON

Gestionnaire d'unité : Valerie SOURLIER

Coordonnées :

Campus Universitaire des Cézeaux
TSA 60026 - CS 60026
3, Place Vasarely
63178 AUBIERE
+ 33 4 73 40 70 50

Site web : http://math.univ-bpclermont.fr/

Documents avec texte intégral

579


Références bibliographiques

491


Politique des éditeurs


répartition par type de document


Nuage de mots-clés

Corona problem Boundary layers Unstructured mesh Eem2017 Algèbre de Hopf Géométrie non commutative Least-squares approach Bifurcating Markov chains Fusible Deviation inequalities Quantum groups K-theory Hypocoercivity Spectral theory Self-similar solution Large deviations Dirichlet series Consistency Poincaré inequality Logarithmic Sobolev inequality Plasma Bivariant K-theory Cellular aging Arc Finite volume method Styles $C0$-semigroups Diffusion equations Essential spectrum P-adic meromorphic functions Heat transfer Ballistic annihilation Groupoids Pre-arcing time Asymptotic analysis Convection-diffusion equations Arc root Geodesic distance Ergodicity Gestion Hopf algebra Hochschild cohomology Hydrodynamic limit Wasserstein distance Navier-Stokes equations Dépense énergétique Grandes déviations Graph Null controllability Bayesian estimators Markov process Conservation laws Durbin-Watson statistic Espaces adéliques rigides Maximum likelihood estimator Arakelov Geometry and diophantine applications Moyenne tension Lyapunov functions Numerical simulation Functional calculus Arc électrique Cathode Drift-diffusion system Global weak solutions Enveloping algebra Lie groupoids Site disorder Phase transition Hitting times Finite volume schemes Asymmetric zero-range process Fonction L Change-point Fractional Brownian motion Fourier coefficients Fokker-Planck equation Geometric inference Elliptic curves Coupling Finite volume Grenoble Index theory Convergence to equilibrium Géométrie d'Arakelov et applications diophantiennes Moderate deviation principle SOM Groupes quantiques Distribution of values Hausdorff dimension Noncommutative geometry Condensation Finite element methods Finite volume scheme Existence Uniqueness Cauchy problem P-adic analytic functions Boltzmann equation Porous media Numerical approximation

 

Besoin d'aide ?

Consultez ou téléchargez nos guides :

Guide Pratique // Premiers pas dans HAL
Guide Pratique // Mieux comprendre l'Open Access et HAL

Pour toute information et aide au dépôt des publications dans HAL Clermont Auvergne, ou pour toute demande de formation, contactez nous :

Jessica LEYRIT
Administratrice HAL UCA - Bibliothèque Numérique
jessica.leyrit@uca.fr
04 73 40 55 44

Anne LESOBRE
Correspondante HAL Sciences - BU des Cézeaux
anne.lesobre@uca.fr
04 73 40 78 83

 

logo BCU