Accéder directement au contenu Accéder directement à la navigation
Bienvenue dans la collection du Laboratoire de Mathématiques
J.A. Dieudonné - UMR 7351




A partir de cette page, vous pouvez :

 

DERNIERS DÉPÔTS

Chargement de la page

 


 

NOMBRE DE DOCUMENTS

2 819

NOMBRE DE NOTICES

1 725

EVOLUTION DES DÉPÔTS

RÉPARTITION DES DÉPÔTS PAR TYPE DE DOCUMENT

MOTS CLÉS

Hyperbolic systems Finite volume schemes Optimal control Convergence analysis Large deviations Periodic solutions Model selection Parallel computing Conservation laws Gibbs distributions Entropy solution Shape optimization Dynamical systems Nonlinear vibrations Finite elements Finite volume method Convergence Operad Shallow water Optimization Simulation Modélisation Complexity Image segmentation Consistency Friction Partial differential equations Solitary waves Inverse problems VOLUMES FINIS Finite volume methods Coextrusion Workflows Adaptive estimation Discontinuous Galerkin Elastic waves Well-balanced scheme Isogeometric analysis Operator splitting Hydrostatic reconstruction Tokamak Density estimation CFD Aerodynamics Finite volume scheme Level sets Finite volumes Water waves Maxwell's equations Boundary conditions Scalar conservation laws Turbulence Maxwell equations Rheology Random graphs Operads Plasma equilibrium Game theory Small divisors Hybridizable discontinuous Galerkin method Nonlinear elliptic equations Stabilité Overland flow Bifurcation theory Source terms Inverse problem Chaos Data completion Discontinuous Galerkin method Descent direction Stability Blow-up Domain decomposition methods Chemotaxis Euler equations Nonlinear water waves Domain decomposition Pattern formation Harmonic domain Normal form Implicitization NAVIER-STOKES EQUATIONS Optimisation Shallow water equations Interpolation Finite element method Équations de Maxwell Normal forms Nanophotonics Finite element Finite volume Classification Seismic imaging PDE Poisson process Interacting particle systems Bifurcations Numerical analysis Segmentation Discontinuous Galerkin methods